

Adobe Portable Document Format

Inventory of long-term preservation risks

Version : 0.2
Author : Johan van der Knijff
Date : 20-10-2009

Koninklijke Bibliotheek, national library of the Netherlands
Research & Development Division

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 2

I. Revision history

Revision number Date Author Comments

0.1 12-10-2009 JvdK

0.2 20-10-2009 JvdK

Incorporated comments by Barbara Sierman;
added risk overview tables, added section on
risk mitigation to introduction; several minor
corrections and additions.

II. Related documents

Document name Date Author

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 3

III. Table of contents

I. Revision history .. 2

II. Related documents ... 2

III. Table of contents .. 3

1 Introduction.. 7
1.1 Scope and target audience .. 7
1.2 Outline of this document .. 7
1.3 On the mitigation of preservation risks .. 7

2 Structure of a Portable Document Format file.. 9
2.1 Introduction .. 9
2.2 PDF file structure ... 9

2.2.1 Header... 10
2.2.2 Body .. 10
2.2.3 Cross-reference table .. 10
2.2.4 Trailer ... 10

2.3 PDF objects .. 10
2.3.1 Boolean objects ... 10
2.3.2 Numeric objects... 10
2.3.3 String objects... 10
2.3.4 Name objects ... 10
2.3.5 Array objects ... 11
2.3.6 Dictionary objects ... 11
2.3.7 Stream objects ... 11
2.3.8 Null object ... 11
2.3.9 Indirect objects.. 11

2.4 PDF Document structure .. 12

3 File identifiers and general information... 15
3.1 Identifiers.. 15
3.2 General information.. 15
3.3 Identification of version number .. 16

4 Authentication .. 19
4.1 Background .. 19
4.2 History of authentication-related features .. 19
4.3 Identification .. 20

5 Fonts .. 21
5.1 What is a font?.. 21
5.2 Font types ... 21
5.3 Embedding and subsetting of fonts .. 22
5.4 Legal aspects of embedded fonts.. 22
5.5 Implications for digital preservation .. 23
5.6 Overview of risks ... 23
5.7 History of supported fonts.. 23
5.8 Identification .. 23

6 Colours .. 25
6.1 Colour spaces ... 25
6.2 History of supported colour spaces .. 25

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 4

6.3 Colour depth ... 25
6.4 History of supported colour depths .. 26
6.5 Overview of risks ... 26
6.6 Identification .. 26

7 Embedded data and file attachments ... 27
7.1 Background .. 27
7.2 Overview of risks ... 27
7.3 History of embedding-related features ... 27
7.4 Identification .. 27

8 Encryption and password protection ... 29
8.1 Background .. 29
8.2 Overview of risks ... 30
8.3 History of encryption-related features.. 30
8.4 Identification .. 30

9 Filters... 31
9.1 Background .. 31
9.2 Overview of risks ... 32
9.3 History of allowed filters.. 32
9.4 Identification .. 33

10 Images ... 35
10.1 Background .. 35
10.2 Overview of risks ... 35
10.3 History of image-related features ... 36
10.4 Identification .. 36

11 Interactivity .. 37
11.1 Background .. 37
11.2 Overview of risks ... 37
11.3 History of interactive features .. 37
11.4 Identification .. 37

12 Links and references to external data .. 39
12.1 Background .. 39
12.2 Overview of risks ... 40
12.3 History of features that use external references.. 40
12.4 Identification .. 41

13 Multimedia.. 43
13.1 Background .. 43
13.2 Movie annotations .. 43
13.3 Sound annotations .. 43
13.4 Screen annotations.. 44
13.5 3D annotations.. 44
13.6 Link annotations ... 44
13.7 Overview of risks ... 44
13.8 History of multimedia features ... 45
13.9 Identification .. 45

14 Scripting.. 47
14.1 Background .. 47
14.2 Overview of risks ... 47
14.3 History of scripting features ... 47
14.4 Identification .. 48

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 5

15 Structure ... 49
15.1 Background .. 49
15.2 Overview of risks ... 49
15.3 History of structure-related features ... 50
15.4 Identification .. 50

16 Known issues... 51

Acknowledgements ... 53

References ... 55

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 6

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 7

1 Introduction

1.1 Scope and target audience

Within the e-Depot repository of the National Library of the Netherlands (KB), the Adobe
Portable Document format is the prevalent file format that is used for storing digital
publications. Since the KB’s mandate includes ensuring the long-term preservation and
accessibility of these materials, identifying potential threats to their long-term availability
is of crucial importance. This requires a rather in-depth knowledge on the technical
background of the PDF format. To this end, Adobe has provided a series of technical
References ([1], [2], [5], [6], [7], [8]). However, these documents are primarily aimed at
developers who wish to implement support for the PDF format in their software applications.
As a result, the level of technical detail as well as the sheer size of these documents (the PDF
1.7 Reference alone is a 1300+ page document) makes them rather daunting for non-
programmers. The aim of the current document is to provide a concise and somewhat more
accessible overview of those PDF features that are important from a long-term preservation
and accessibility point of view. It is primarily targeted at our KB colleagues who are actively
involved in the management and operation of the e-Depot (although it might eventually find
its way to a wider audience).

1.2 Outline of this document

Chapter 2 gives an overview of the file structure of a PDF document, the object types that are
the building blocks of the format, and the logical document structure these objects are
organised into. Chapter 3 discusses some general features of the different PDF versions, such
as file identifiers, and how specific PDF versions relate to versions of Adobe’s Acrobat
Reader. The remaining chapters each focus on a specific theme. For each theme (e.g. ‘fonts’,
‘password-protection’, etc.), its relevance to digital preservation and accessibility is
explained, and the important features that are associated with it are discussed. The risks that
are associated with each theme and the implementation history of all discussed features are
summarised in separate tables. This will hopefully facilitate getting an overview of the most
important risks and understanding the ‘history of PDF’. The final section of each chapter
explains how ‘risky’ features can be identified at the level of objects and object attributes in a
file. This section is quite technical. Eventually, we want to expand (or even replace) this
section by explaining how to identify these features with standard tools such as JHOVE,
JHOVE2 or Adobe’s proprietary tools. However, at the time of writing this version of this
document, we yet need to investigate whether any of these tools offer all required
functionality for identifying these features. If not, the object-level descriptions in the current
document could be useful as a basis for feature requests in existing tools, or even for the
creation of some (provisional) new tool. The final chapter, which is still empty in this version,
will be reserved for describing and documenting specific problems with PDF documents,
based on actual experiences from the e-Depot.

1.3 On the mitigation of preservation risks

Since this document focuses on the description and identification of preservation risks, a
discussion of measures to mitigate these risks would be a logical next step. This mitigation
issue may well be covered in future versions of this document. However, it is important to

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 8

make a distinction here between existing materials that are currently stored in the e-Depot,
and on the other hand new materials that are submitted by publishers.

For the latter, the KB has already formulated a set of guidelines [21], and publishers are
requested to adhere to these as closely as possible. The guidelines will be updated from time
to time, and the current document is partially intended as a technical reference on which
future updates will be based. The guidelines themselves will however be maintained
separately from this document.

The situation is quite different for the existing collection, as it encompasses a wide range of
materials, many of which were originally produced at a time when the subject of digital
preservation itself was still virtually unknown. As a result, we do not yet have a clear
overview of the preservation risks associated with these materials. Therefore, for now the
current version of this document focuses on the identification of ‘risky’ features. Once we
have a clearer picture of the actual prevalence of these features in the e-Depot, the next step
would be to think of measures to mitigate these risks. However, these measures may turn out
to be quite different from the recommendations in the publisher guidelines. In order to avoid
any possible mix-up between the two, it might actually be better to keep the discussion of
mitigation measures out of the current document altogether, and cover this in a separate
volume.

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff

2 Structure of a Portable Document Format file

2.1 Introduction

The aim of this chapter is to provide a brief tour of the Portable Document Format. This will
hopefully make it easier to follow the main part of this document. We will first cover the
actual file structure; then we give a description of the various types of objects than can exist
within a PDF file. Finally, we will briefly outline the logical structure of a PDF document.

2.2 PDF file structure

Upon its creation, a PDF file consists of 4 elements (see Figure 1):

1. A file header that specifies the PDF version specification to which the file conforms
2. A body which contains all the objects that make up the document’s content
3. A cross-reference table that serves as an index to the exact byte position where each

object is located within the file
4. A trailer that specifies the location of some special objects (amongst which the

cross-reference table)

When a PDF file is updated, instead of modifying the existing content, data is added to the
end of the file. As a result of this, multiple instances of the body, cross-reference table and
trailer may co-exist in one file.

Figure 1 Initial structure of a PDF file

Date: 20-10-2009
Version: 0.2 Page: 9

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 10

2.2.1 Header
The header of a PDF file is made up of one or two lines. The first line, which is mandatory,
defines to which version specification the file conforms. For example, for PDF 1.4 the header
line would read:

%PDF-1.4

Most PDF files also contain a second comment line that contains a sequence of non-printable
characters. These characters have no particular meaning, but just serve to tell applications
such as e-mail clients and file transfer software that the file’s contents should be treated as
binary data (as opposed to plain ASCII text).

Note that the ‘%’ character is used in PDF files to define comments: all text between the ‘%’
character and the end of a line is treated as a comment.

2.2.2 Body
The body of a PDF file contains the objects (e.g. text streams, images, fonts, etc.) that make
up the document’s contents. For a discussion of PDF objects, see section 2.3.

2.2.3 Cross-reference table
The cross-reference table can be thought of as an index that defines, for each object in the file,
its exact location. The location is expressed as a byte offset, that is, the number of bytes
between the start of the file and the start of the object description within the file. The main
reason for having a cross-reference table is that it allows software that reads a PDF file to
locate and read objects without having to scan the whole file.

Objects in the cross-reference table are either ‘in use’ or ‘free’. ‘Free’ objects are essentially
obsolete, and should not be used (even though a free object may still be physically present in
the file). ‘Free’ objects can be reactivated (i.e. changed to ‘in use’ again), and vice versa. The
cross-reference table keeps track of the number of times each object has been reactivated (or
deleted) through a so-called ‘generation number’. For a detailed discussion of the layout of
the cross-reference table and its contents please see [1], [2], [5], [6], [7], or [8].

2.2.4 Trailer
The trailer contains the location (byte position) of the cross-reference table, as well as some
other special objects.

2.3 PDF objects

This section gives a brief description of the object types that are supported in PDF. There are
eight basic types of objects, and a special type of object that allows one object to refer to
another object:

2.3.1 Boolean objects
Boolean objects are identified by the keywords ‘true’ and ‘false’ (case sensitive!).

2.3.2 Numeric objects
PDF supports numbers as integers and real numbers. Numbers that are in exponential format
are not supported by the PDF numeric object.

2.3.3 String objects
A string is a sequence of 8-bit bytes that is used to represent text data. Strings can be defined
as either ‘literal’ strings, which are enclosed in parentheses ((…)), or hexadecimal strings,
which are enclosed in angle brackets (<…>). The specification of PDF 1.7 introduced a
further subdivision into text strings, PDFDocEncoded strings, ASCII strings and byte strings.

2.3.4 Name objects

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 11

A name is a uniquely defined sequence of characters, preceded by a slash (/). Whitespace and
certain delimiter characters are not allowed within names, but these limitations can be
circumvented by representing such characters using their corresponding hexadecimal code.

2.3.5 Array objects
An array is a one-dimensional collection of objects arranged sequentially. An array may be
made up of any combination of object types, including other arrays. Arrays are enclosed in
square brackets ([…]). An example:

[true /MyName (Johan) 2.71]

2.3.6 Dictionary objects
A dictionary is a lookup table whose entries are defined as key / value pairs. A key is always
a name object, whereas the value can be any type of object, including another dictionary.
Dictionary objects are enclosed in double angle brackets (<< … >>). The following is an
example of a simple dictionary:

<< /Type /Example
 /Subtype /DictionaryExample
 /Version 0.01
 /IntegerItem 12
 /StringItem (a string)
 /Subdictionary << /Item1 0.4
 /Item2 true
 /LastItem (OK)
 >>
>>

2.3.7 Stream objects
A stream object is a sequence of bytes. Unlike string objects, streams can be of unlimited
length. A stream object always starts with a dictionary that describes the sequence of bytes in
the stream (such as size, filters, and any decode parameters), followed by the actual stream,
which is wrapped between the keywords ‘stream’ and ‘endstream’. An example:

2 0 obj
<<
/Length 39
>>
stream
BT
/F1 12 Tf
72 712 Td (A short text stream.) Tj
ET
endstream
endobj

Note the ‘obj … endobj’ lines at the beginning and end of the object description. These label
the stream object as an ‘indirect object’, which is explained in section 2.3.9. Stream objects
are always defined as indirect objects.

2.3.8 Null object
This is a ‘neutral’ object, i.e. it does nothing. It is used, amongst other things, for dealing with
nonexistent objects.

2.3.9 Indirect objects
Using indirect objects it is possible to assign a unique object identifier to any object. This
object identifier, which is always an integer number, can then be referred to by other objects.

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 12

The object identifier is made up of a unique object number, followed by a generation number.
For example:

5 0 obj
 (Some text)
endobj

Here, an indirect string object is defined with an object number of 5, generation number 0 and
the value ‘Some text’. The object can then be referred to from some other location in the file
by using an indirect reference, which is defined by the object identifier followed by the
keyword ‘R’:

5 0 R

An indirect reference to a nonexistent object returns the null object.

2.4 PDF Document structure

Section 2.2 discussed the file structure of a PDF document, and section 2.3 gave an overview
of the objects that exist within a document. The document structure (or logical structure)
describes how the objects are organised within the body element of a PDF file. Figure 2 gives
an overview of the logical structure of a PDF file, which is a hierarchical tree. At the root of
the tree is the catalog dictionary. The catalog has a number of entries, most of which are
dictionaries (see Section 2.3.6) that contains child objects of their own. For instance, the
Pages dictionary contains references to an array of Page dictionaries; in turn, the individual
Page dictionaries refer to the content stream objects that make up the content of a page,
annotations, and so on. In practice the structure of any actual PDF document will be more
complex than the one shown in Figure 2, because the catalog may contain many more entries
than the ones shown in the Figure.

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff

Figure 2 Structure of a PDF document

Date: 20-10-2009
Version: 0.2 Page: 13

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 14

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 15

3 File identifiers and general information

3.1 Identifiers

Before going into the actual features of the Portable Document Format, it is helpful to first
explain a number of identifiers that are often used to describe and identify specific file
formats. Table 3.1 gives an overview. Some of these identifiers distinguish between different
PDF versions, whereas others only describe PDF as a whole.

MIME is an abbreviation of Multipurpose Internet Mail Extensions. It was originally a
standard to describe the content of e-mail messages. However, it is now commonly used as a
descriptor of digital media types in general. A MIME descriptor is made up of a least a type
part and a subtype part, which are separated by a forward slash [9]. For PDF, the MIME type
is always ‘application/pdf’, without distinguishing between PDF versions.

PUID stands for PRONOM Unique Identifier. It is the identifier that is used in the online
PRONOM file format registry [3]. Each PDF version has its own PRONOM identifier.

e-Depot ID is the identifier that is used to uniquely define each file type in the KB’s e-Depot
repository. As with the PRONOM identifier, each PDF version has its own e-Depot ID.

Many file types can also be recognised (at least to some extent) by their fixed extension
(suffix), which is always .pdf for the Portable Document Format.

3.2 General information

In addition to these identifiers, Table 3.1 provides some additional information that is mainly
useful within the context of the KB’s e-Depot. The release date gives an indication from
which year onwards documents of a particular version exist.

The specifications of the PDF format were laid out to ensure a great degree of forward
compatibility. This means that old versions of the reader software are always able to display
files that have a version number that is more recent. As an example, Adobe Acrobat Reader
1.0 will read PDF 1.7 files, even though PDF 1.7 obviously did not exist when Acrobat
Reader 1.0 was released. The PDF specification states that reader (or viewer) applications
should be written in such a way that they simply ignore any unknown features (such as new
features that did not yet exist when the reader was written). This also implies that if a (new)
document contains features that are not recognised by the (old) reader, these features may not
display the way they should, or they may not even display at all. Also, aside from Adobe, a
myriad of companies, organisations and individuals offer applications for viewing PDF
documents. Because of the complexity and feature-richness of the PDF format, many of these
third-party applications do not support the full set of features defined in the PDF
specification. This may also result in documents not appearing the way they were originally
intended.

Because of this, Table 3.1 lists the native Adobe reader that corresponds to each PDF version.
Only the native reader guarantees full support of all the features that may be (potentially)
present in a document.

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 16

Finally, Table 3.1 shows, for each PDF version, the corresponding number of publications in
the e-Depot repository.

3.3 Identification of version number

The version number of any given PDF document is defined as a comment in the first line of
the file header (see also section 2.2.1). As an example, for a PDF 1.4 document this will be:

%PDF-1.2

From PDF 1.4 onwards, version info can also be stored as a version entry in the file’s so-
called ‘catalog dictionary’. This value can be different from the value in the file header. If this
is the case, the value in the catalog should be used. The idea of having two different version
identifiers within one file that can have conflicting values may seem strange. However, when
an existing PDF file is modified, Acrobat adds the applied changes to the end of the document
(instead of overwriting the existing document). One of the advantages of this approach is that
changes that were applied to a document can be traced back and, if needed, undone. If, for
example, a PDF 1.4 document is modified and subsequently saved in PDF 1.5 format, this
will leave the original header (which reads ‘%PDF-1.4’) unchanged, but a new catalog entry
is added which can be used to identify the document as PDF 1.5.

Table 3.1 File identifiers and general information related to different versions of Adobe’s Portable Document Format

 MIME PUID e-depot ID Extension Released Native reader # e-Depot *

PDF 1.0 application/pdf fmt/14 52 .pdf 1993 Acrobat 1.0

PDF 1.1 application/pdf fmt/15 31 .pdf 1996 Acrobat 2.0

PDF 1.2 application/pdf fmt/16 1 .pdf 1996 Acrobat 3.0

PDF 1.3 application/pdf fmt/17 2 .pdf 1999 Acrobat 4.0

PDF 1.4 application/pdf fmt/18 48 .pdf 2001 Acrobat 5.0

PDF 1.5 application/pdf fmt/19 49 .pdf 2003 Acrobat 6.0

PDF 1.6 application/pdf fmt/20 50 .pdf 2004 Acrobat 7.0

PDF 1.7 application/pdf ? 62 .pdf 2006 Acrobat 8.0

PDF 1.7 (ISO 32000-1) application/pdf ? ? .pdf 2008 Acrobat 9.0

* Date of count: DD/MM/2009. Note that these figures are based on metadata stored in the e-Depot. It is known that in several cases the actual document
version does not correspond to the version indicated in the metadata, so these figures are only an indication.

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 19

4 Authentication

4.1 Background

For the long-term preservation of digital materials it is essential to have some mechanisms
that ensure their authenticity. Authenticity includes fixity, the integrity of the content
information, and provenance, or the history of the content information and its changes over
time.

The PDF format offers a number of features that may be useful within this context. These are
based on attaching a digital signature to a document. Like an ordinary signature, the purpose
of a digital signature is to demonstrate that a document was created by the person who signed
it, and that no changes were made to the document after it was signed. Digital signatures
typically work in the following way. First, a hash function is applied to the raw byte data in a
file, which produces a so-called hash value or message digest. This is a fixed-size sequence of
bits. The important thing to remember here is that hash functions work in such a way that
even very small changes in their input (here: the data in the file) immediately result in drastic
changes in their output. As a next step, the message digest is encrypted using a private key
that is known only to the owner or creator of the original document. The encrypted message
digest serves as the signature, and is attached to the file1. A recipient (or user) of the file can
then verify the integrity of the document using a signature verifying algorithm. Given the
contents of the file, a public key and the signature, the signature verifying algorithm checks
whether the message digest as it is computed from the received file matches the signature. If
this is the case, this substantiates the file’s authenticity.

A remaining problem is that by itself this approach does not warrant the identity of the owner
of the public key. In other words: the signer of a document may pretend to be someone else.
Users of digital signatures may therefore register their public key with a certificate authority,
which is a third party that issues certificates that contain a user’s public key and information
on his or her identity [10].

As it happens, the PDF format supports different types of signatures, each of which has a
different specific purpose. These signature types may co-exist in one file. This is not
described in detail here; however, future versions of this document may add a more
exhaustive description of authentication features in PDF.

4.2 History of authentication-related features

The following table gives an overview of authentication features in PDF and from which PDF
version onwards they are supported:

1 The message digest is actually computed over a range of bytes in a file, which is typically the whole
file excluding the bytes that are occupied by the signature itself (otherwise, the addition of the
signature would by itself immediately invalidate the signature!)

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 20

Feature Support from version
Digital signatures, signature values
calculated from message digest

PDF 1.3

Possibility to calculate signatures from
object digest*

PDF 1.5

* An object digest is a hash that is calculated by ‘selectively walking a subtree of
objects in memory’. Object digests can be used as an alternative to message
digests.

4.3 Identification

The presence of a signature dictionary –a dictionary whose type is Sig– indicates that a
document uses some type of digital signature.

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff

5 Fonts

5.1 What is a font?

A font can be defined as a collection of glyphs for a particular character set. Here, a glyph
denotes a specific graphical rendering of a character. Figure 3 below illustrates this by
showing six different glyph renderings of the character ‘a’:

Figure 3 Six glyph renderings of the character 'a'

5.2 Font types

The PDF format allows the use of a number of different font types. The following font types
are also known as simple fonts (this is to distinguish them from composite fonts, which are
discussed further on in this section):

Type 1 fonts include some of the most commonly used fonts, the so-called ‘standard 14’
fonts2. Multiple master (MMType1) fonts are an extension of Type 1 fonts.

TrueType is a font format that was developed by Apple Computer, Inc, and which was later
adopted as a standard font format for the Microsoft Windows operating system.

Technically, Type 1 and TrueType are quite similar. A noteworthy feature shared by both font
types is that their definition includes so-called ‘hinting’ information, which improves the
rendering quality of these fonts at small sizes and low resolutions [18].

OpenType (supported from PDF 1.6 onwards) is an extension of the TrueType format.

Type 3 fonts are quite different from the aforementioned font types, in that they use streams of
PDF graphics instructions to describe glyphs. (All other font types refer to a separate font
program for this.) Individual glyphs of a Type 3 font may contain graphic effects (e.g.
graduated fills, variable stroke widths) that are not achievable with Type 1 or TrueType fonts.
Because of this, Type 3 fonts are often used for logo designs [19]. Type 3 fonts do not support

2 The ‘standard’ fonts are: Times−Roman, Times−Bold, Times−Italic, Times−BoldItalic,
Helvetica, Helvetica−Bold, Helvetica−Oblique, Helvetica−BoldOblique, Courier,
Courier−Bold, Courier−Oblique, Courier−BoldOblique, Symbol, ZapfDingbats

Date: 20-10-2009
Version: 0.2 Page: 21

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 22

‘hinting’, which means that the rendering quality may deteriorate at small sizes and low
resolutions.

Type 0 fonts (supported from PDF 1.2 onwards) are composite fonts. The glyphs of Type 0
fonts are obtained from a font-like object that is called a CIDFont. There are 2 types of
CIDFonts: Type 0 CIDFonts, whose glyph descriptions are based Type 1 fonts; and Type 2
CIDFonts, whose glyph descriptions are based on TrueType fonts3. Type 0 fonts (and their
associated CIDFont objects) are particularly useful when dealing with writing systems for
languages with large character sets, such as Chinese, Japanese and Korean.

5.3 Embedding and subsetting of fonts

For a basic understanding of how fonts are represented in PDF, it is important to make a
distinction between font dictionaries and font programs. A font (Font) dictionary simply
contains general information about a font, such as the font’s type, name and PostScript name.
The actual glyphs of a font are defined in a font program. Both are connected in the following
way: a font dictionary usually contains a font descriptor (FontDescriptor) entry. The font
descriptor is a dictionary that contains entries on various font attributes. One of its (optional)
attributes is a FontFile entry, which is a stream object that contains the embedded font
program. The appearance of documents that use font programs that are not embedded will
depend on the viewer application and the environment in which it runs. If a font that matches
the PostScript name that is specified in the font dictionary is available on the user’s system,
this font will be used and the document will –in most cases, but read on- display normally. If
not, the information in the font descriptor dictionary may be used by the viewer to either
generate a substitute font, or select a font that is similar to the original one. However, the
outcome of this process is rather unsure, and embedding fonts by default will prevent most of
these problems. There is, however, one important issue that is not solved by embedding alone.
Suppose you create a document that uses a font called ‘MyFont’, which is embedded. Now
imagine that you send this file to a colleague, who, by some strange coincidence, has a font
installed on his computer that is also called ‘MyFont’, but which is, apart from the name, an
entirely different font altogether. As the default behaviour of Adobe’s reader application is to
use the system font if it can be found, your colleague will end up seeing your document with
wrong font [20]! This situation can be prevented from happening by embedding only a subset
of the font. With subsets, only the glyphs that are actually used in the document are embedded
(rather than the entire character set). More importantly, embedded subsets are stored under a
unique name that, although derived from the original font name, is actually different from it,
so it will never match any system font name. This ensures that reader software will always
use the actual embedded font.

The above discussion does not apply to Type 3 fonts, which do not use font programs at all.
Instead, the Font dictionary of a Type 3 font has a separate entry where a dictionary can be
defined that contains, for each character, the content stream that constructs and paints the
corresponding glyph. These content streams are embedded within the document by default.

5.4 Legal aspects of embedded fonts

As font programs are subject to copyright, there may be restrictions to the use of font
programs. Such restrictions may, for example, forbid fonts to be embedded at all.
Alternatively, embedding may be allowed for the purpose of viewing and printing the

3 A CIDFont is never used directly, but only indirectly as a component of a Type 0 font.

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 23

document, but the further use of the font for creating new or modified documents may be
prohibited.

5.5 Implications for digital preservation

PDF documents that use fonts that are not embedded within the file present a serious
preservation and accessibility risk. When such files are viewed on a (future) system on which
these fonts are not available, they may not display correctly, or may be completely illegible.
In order to avoid any possible ambiguity about the font’s name, fonts should be subset as well
as embedded. There may be a conflict between these long-term preservation requirements and
copyright restrictions on certain fonts. Therefore, it is important to use only fonts that can be
embedded legally.

5.6 Overview of risks

Risk

 Appearance of documents that contain non-embedded fonts may be
different from the appearance as intended by the producer of the
document.

 Documents that contain non-embedded fonts may be completely illegible.
 Documents may use fonts that cannot be legally embedded.
 Possible naming conflict of fonts that are embedded without subsetting .
 Rendering quality of Type 3 fonts may deteriorate at small sizes or low

resolutions*
* This is not really a preservation risk, but as the KB aims to offer high-quality
materials, it is nevertheless important to avoid the use of Type 3 fonts as much
as possible.

5.7 History of supported fonts

The following table shows which font types are allowed for each PDF version:

Font type Support from version
TrueType PDF 1.0
Subset TrueType PDF 1.0
Type 1 PDF 1.0
Subset Type 1 PDF 1.1
Type 3 PDF 1.0
Type 0 PDF 1.2
CIDFont Type 0 PDF 1.2
CIDFont Type 2 PDF 1.2
OpenType PDF 1.6

5.8 Identification

The following table summarises how the main font features in a PDF file can be identified:

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 24

Feature Identified by presence of
Font dictionary object with type Font (font type

defined by subtype, e.g. TrueType ,
Type1, etc)

Font descriptor dictionary object with type FontDescriptor
(which is an optional entry in a font
dictionary)

Embedded font program FontFile, FontFile2 or FontFile3
entry in font descriptor dictionary

Font subset (in font dictionary) value of BaseFont entry that is made
up of six uppercase letters, followed
by a ‘+’ sign and the original
PostScript name *

Font subset (in font descriptor dictionary) value of FontName entry that is
made up of six uppercase letters,
followed by a ‘+’ sign and the
original PostScript name *

* For example: APYTEB+Helvetica

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff

6 Colours

6.1 Colour spaces

This section covers features that affect the way colours are displayed in a PDF file.

<Insert a brief discussion of colour spaces here. Mention problems that can occur, e.g. colours
may appear differently on different devices (monitor, printer). Explain how ICC profiles and
OutputIntents can help when dealing with different devices>

6.2 History of supported colour spaces

The following table shows which colour spaces are allowed from what PDF version onwards:

Colour space Type Support from version
DeviceGray Device-dependent PDF 1.0
DeviceRGB Device-dependent PDF 1.0
DeviceCMYK Device-dependent PDF 1.0
CalGray Device-independent PDF 1.1
CalRGB Device-independent PDF 1.1
Lab Device-independent PDF 1.1
ICCBased Device-independent PDF 1.3
Indexed Special PDF 1.2
Pattern Special PDF 1.2
Separation Special PDF 1.2
DeviceN Special PDF 1.3

6.3 Colour depth

Colour depth defines, for each colour channel, the number of levels than can be expressed.
So, for an RGB image this would be the maximum number of discrete levels of red, green and
blue. It is often expressed as a bit depth, i.e. as the number of bits that are used to represent
each colour. The number of colour levels is related to bit depth in the following manner:

b
cN 2

where Nc is the number of colour levels and b is the bit depth. The table below shows the
number of colour levels for some typical bit depth values:

b Nc

1 2
2 4
4 16
8 256

16 65536
32 4294967296

Date: 20-10-2009
Version: 0.2 Page: 25

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 26

The relevance of colour depth in a digital preservation context is that the specifications of
older PDF versions only allow 1, 2, 4 or 8 bit images, whereas from PDF 1.5 onwards 16 bit
images are also supported. Generally speaking, image quality improves with increasing colour
depth (although other factors are important as well). When deciding on a file format for the
long-term preservation of documents that contain high-quality artwork or photographic
material, the ability to represent images in the best possible quality may be a crucial
requirement. Consequently, the possibility to use large bit depths could be an important factor
in the decision process.

6.4 History of supported colour depths

The following table shows which colour depth values are supported from which PDF version
onwards:

Colour depth Support from version
1, 2, 4, 8 bits PDF 1.0
16 bits PDF 1.5

6.5 Overview of risks

Risk

 Appearance of images that use device-dependent colour spaces may be
different from the appearance as intended by the producer of the document

 Use of low bit-depths may compromise appearance of high-quality
artwork or photographic material

6.6 Identification

To be written…

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 27

7 Embedded data and file attachments

7.1 Background

The PDF format provides several mechanisms for embedding data from external files within a
PDF document. Embedded objects are not part of the document’s content stream, although the
content stream may refer to them through annotations (e.g. link, movie, sound or file
attachment annotations).

The main long-term accessibility risk associated with embedded objects is that they may rely
on external applications. For instance, an embedded word processing file will require a word
processing application that supports that specific file format. In addition, since any type of file
can be embedded, it is also possible to embed viruses and other malicious code, which might,
when activated,s even be a threat to the entire repository that holds a PDF document.

7.2 Overview of risks

Risk

 Display of embedded content may rely on external applications that may
not be available in the future

 Embedding of viruses, worms and other malicious code is possible

7.3 History of embedding-related features

The following table shows which embedding-related features are supported from which PDF
version onwards:

Feature Support from version
Embedded sound data PDF 1.2
Embedded movies PDF 1.3
Embedded file streams PDF 1.3

7.4 Identification

The presence of embedded content can be uniquely identified by the presence of the EF entry
in a file specification dictionary. Here is an example:

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 28

31 0 obj
<</Type /Filespec % The root object, which
/F (mysvg.svg) % points to an embedded file stream
/EF <</F 32 0 R>>
>>
endobj

32 0 obj % The embedded file stream
<</Type /EmbeddedFile
/Subtype /image#2Fsvg+xml
/Length 72
>>
stream
<?xml version="1.0" standalone="no"?>
<svg><!-- Some SVG goes here--></svg>
endstream
endobj

Here the upper object (31 0) is the file specification. The EF entry points to another object (32
0), which contains the embedded data. Noting that the stream object has the EmbeddedFile
type, you might wonder whether this is not a better unique identifier for embedded content.
The problem with this approach is that not all file streams that contain embedded content have
the EmbeddedFile type, whereas the reference to these streams always contains an EF entry.
Scanning for file attachment annotations (i.e. annotation objects with subtype FileAttachment)
will not identify all references to embedded content either, since other annotation types may
refer to embedded objects as well.

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 29

8 Encryption and password protection

8.1 Background

From PDF 1.1 onwards it is possible to use encryption to restrict access to a document’s
content. Encryption is done at the level of strings and streams. Viewing such an encrypted
document requires a password. A password-protected PDF file can have up to two passwords:
an owner password and a user password. The owner password always provides full,
unrestricted access to the file. Besides this, the owner of a file can set or change the user
password, and he or she can define special document permissions. The user password allows
one to decrypt (and consequently display the contents of) a file. Depending on the
permissions set by the owner, users may be barred from performing the following operations
(which are all enabled or disabled separately):

 Printing of the document
 Changing the document (other than by adding or changing text notes)
 Copying of text and graphics from the document
 Adding and changing text notes

On a side note, from PDF 1.5 onwards, these very same permissions can also be set for
unencrypted (non password-protected) documents in the permissions dictionary.

Encryption and password-protection pose a significant threat to the long-term accessibility of
digital materials. First of all, passwords may get lost, or they may simply not be available to
the end users of these materials. Second, even if it is possible to decrypt the contents of a file,
the restrictions imposed by the document permissions can introduce problems when trying to
migrate such a file to a newer version (or to convert it to another format). This last
observation also applies to file permissions set in the permissions dictionary in PDF 1.5 and
more recent4.

4 However, the PDF Manual contains the following note on document permissions: ‘Despite the
specification of document permissions in a PDF file, PDF cannot enforce the restrictions specified. It
is up to the implementors of PDF viewers to respect the intent of the document creator by limiting
access to an encrypted PDF file according to the permissions and passwords contained in the file’ [2].
This seems to suggest that the restrictions (printing, copying, changing) could be circumvented by
deliberately not implementing them in the viewer. (In the case of an encrypted file, the password is still
needed for decrypting the contents of the file in the first place.

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 30

8.2 Overview of risks

Risk

 Password-protected files may become inaccessible when password is lost
 Password protection and file permission settings may prevent users from

performing certain actions on a document
 Password protection and file permission settings may hinder actions that

are necessary for migration

8.3 History of encryption-related features

The following table shows which encryption-related features are supported from which PDF
version onwards:

Feature Support from version
Encryption of strings and streams using RC4 encryption
algorithm with 40 bit key.

PDF 1.1

Support for 128-byte encryption keys PDF 1.4
Encryption using alternative unpublished algorithm PDF 1.4
Additional document permissions5 PDF 1.4
Encryption of embedded files in documents that are
otherwise unencrypted

PDF 1.5

Encryption using AES (Advanced Encryption Standard)
algorithm

PDF 1.6

8.4 Identification

Information that is related to encryption is stored in the encryption dictionary (Encrypt entry),
which is located in the document’s trailer dictionary. If the Encrypt entry is absent, this means
that the document is not encrypted.

5 A noteworthy document permission that was added in PDF 1.5 limits printing to a reduced-quality
representation of a document.

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 31

9 Filters

9.1 Background

Section 2.3.7 already introduced stream objects, which are the main building blocks of the
content stream of a PDF document. The data inside a stream object are often encoded in a
specific way. A filter is an optional part of the stream object specification that tells the viewer
application how the data inside the stream have to be decoded. There are several reasons why
data inside a stream may be encoded.

First of all, the creator of a PDF file may want to avoid the presence of any non-printable
characters inside the document to ensure maximum portability of the file across different
environments. To achieve this, he can encode (transform) all binary data (such as images) into
a representation that only contains printable ASCII characters. Examples of such encoding
algorithms are ASCII hexadecimal encoding and ASCII base-85 encoding. A viewer
application that supports the corresponding decoding algorithm will be able to perform the
reverse transformation, which yields the original binary data as they were before encoding.

Compression (i.e. data volume reduction) is another reason for encoding data in a stream
object. Compression is especially useful for image data, which typically occupy large
amounts of storage space in uncompressed form. In practice, text data in a PDF file are
usually represented in compressed form as well.

Irrespective of the aim of encoding stream data, the important thing is that the viewer
application knows which stream objects contain encoded data, and what method was used for
encoding. The very purpose of the filter specification is to provide this piece of information.
In addition, in order to interpret an encoded object in a meaningful way, the viewer
application needs to support the decoding algorithm that is defined in the filter specification.

The importance of filters in the context of long-term preservation is that PDF files that
contain encoded data require the availability of a viewer application that is able to decode the
data according to the filter specification. The PDF specification defines a set of standard
filters that should be supported by all PDF viewer applications. New filter types are added to
this set from time to time, which means that PDF files that use these new encodings may not
display correctly on older viewers. Furthermore, in theory it is possible that filter types attain
deprecated status, which means that support may be dropped in future versions of the file
specification. To our knowledge this has not happened yet to any of the filters in the standard
filters set.

A number of data compression algorithms are subject to patents or intellectual property
constraints, which may endanger the future accessibility of files that use these encodings. This
is sometimes used as an argument against the use of the LZWDecode filter [11]. The LZW
compression algorithm used to be covered by several patents, which led to some controversy
over legal aspects of its use during the mid-‘90s (see e.g. [12]). Even though these patents
have expired by now, the use of the LZWDecode filter is not permitted in the PDF/A-1
specification [13]. Also, parts of compression algorithms may be subject to so-called
‘submarine patents’, which are patents that were “first published and granted long after the
initial application was filed” [14]. Just as an example, there is currently no 100% guarantee
that the JPXDecode filter (PDF 1.5), which is based on the JPEG2000 standard, is not
affected by this (although this is controversial) [15].

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 32

Finally, some compression methods are lossy (meaning that some of the information
contained in the original image data is lost in the compressed representation) and result in a
reduction of image quality. This is not strictly a preservation issue, but as the KB aims for
high quality graphics it is nevertheless important that lossy compression methods are used
with caution (or not used at all).

9.2 Overview of risks

Risk

 Appearance of documents that use filter encodings that are not supported
by a specific viewer application may be different from the appearance as
intended by the producer of the document

 Intellectual property constraints on certain decoding algorithms may
endanger future accessibility of documents that use these encodings

 Use of lossy encodings may compromise image quality

9.3 History of allowed filters

The following table lists the standard filters that are allowed within PDF documents:

Filter Description Support from version
ASCIIHexDecode Decodes arbitrary binary data encoded

in ASCII hexadecimal representation
PDF 1.0

ASCII85Decode Decodes arbitrary binary data encoded
in ASCII base-85 representation

PDF 1.0

LZWDecode Decompresses text or binary data (e.g.
monochrome images)

PDF 1.0

RunLengthDecode Decompresses binary data (e.g.
monochrome images)

PDF 1.0

CCITTFaxDecode Decompresses binary data (e.g.
monochrome images)

PDF 1.0

DCTDecode Decompresses colour and grayscale
image data using an algorithm that is
based on the JPEG standard

PDF 1.0

FlateDecode Decompresses text or binary data PDF 1.2
JBIG2Decode Decompresses monochrome image data

encoded using the JBIG2 standard
PDF 1.4

JPXDecode Decompresses data encoded using the
wavelet-based JPEG2000 standard,
reproducing the original image data

PDF 1.5

Crypt Decrypts data encrypted by a security
handler, reproducing the original data as
they were prior to encryption

PDF 1.5

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 33

9.4 Identification

Filter types can be identified from the value of the Filter entry in the object stream dictionary.
It is possible that multiple filters are defined for an object. For instance, the following
example shows an object stream that was first compressed using the LZW algorithm, after
which the compressed binary data were encoded in ASCII base-85 representation. Note that
the decoding needs to proceed in the reverse order, which is why the ASCII85Decode filter
appears first in the Filter dictionary:

1 0 obj
<< /Length 534
/Filter [/ASCII85Decode /LZWDecode]
>>
stream
J..)6T`?p&<!J9%_[umg"B7/Z7KNXbN'S+,*Q/&"OLT'F
LIDK#!n`$"<Atdi`\Vn%b%)&'cA*VnK\CJY(sF>c!Jnl@
RM]WM;jjH6Gnc75idkL5]+cPZKEBPWdR>FF(kj1_R%W_d
&/jS!;iuad7h?[L−F$+]]0A3Ck*$I0KZ?;<)CJtqi65Xb
Vc3\n5ua:Q/=0$W<#N3U;H,MQKqfg1?:lUpR;6oN[C2E4
ZNr8Udn.'p+?#X+1>0Kuk$bCDF/(3fL5]Oq)^kJZ!C2H1
'TO]Rl?Q:&'<5&iP!$Rq;BXRecDN[IJB`,)o8XJOSJ9sD
S]hQ;Rj@!ND)bD_q&C\g:inYC%)&u#:u,M6Bm%IY!Kb1+
":aAa'S`ViJglLb8<W9k6Yl\\0McJQkDeLWdPN?9A'jX*
al>iG1p&i;eVoK&juJHs9%;Xomop"5KatWRT"JQ#qYuL,
JD?M$0QP)lKn06l1apKDC@\qJ4B!!(5m+j.7F790m(Vj8
8l8Q:_CZ(Gm1%X\N1&u!FKHMB~>
endstream
endobj

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 34

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 35

10 Images

10.1 Background

The PDF specification includes several features that could be a threat to the long-term
accessibility of images in documents. What these features have in common is that they may
alter the look of images, depending on the context or as a result of user actions.

Alternate images –introduced in PDF 1.3- is a feature that allows one to use multiple versions
of an image in one file. A typical use would be to define a reduced resolution version of an
image that is displayed when viewing a file on-screen. The full-resolution version of the same
image could then be reserved for printing.

PDF 1.5 introduced optional content, which allows one to selectively view or hide graphical
objects. As an example, different layers of a map (roads, waterways, cities) could be defined
as separate elements in an optional content dictionary, allowing the user of a document to
view or hide particular layers.

PDF 1.4 introduced the transparent imaging model. This enables (graphical) objects to be
painted with varying degrees of opacity. The implementation of the transparent imaging
model is quite complex. Viewer applications that do not support transparency are generally
able to display any document that contains transparent images. However, these images will be
displayed as fully opaque, so the document may look very different from the way it was
originally meant to.

Summarising, the potential effect of the above features is, that the visual appearance of a
document as it is experienced by a user may be very different from the original appearance as
it was intended by the producer of the document.

10.2 Overview of risks

Risk

 Use of alternate images may result in document appearance that is
different from the appearance as intended by the producer of the document

 Use of optional content may result in document appearance that is
different from the appearance as intended by the producer of the document

 Use of transparency may result in document appearance that is different
from the appearance as intended by the producer of the document

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 36

10.3 History of image-related features

The following table summarises the implementation of the image-related features discussed in
the previous section:

Feature Support from version
Alternate images PDF 1.3
Transparency (‘transparent image model’) PDF 1.4
Optional content PDF 1.5

10.4 Identification

The following table shows how the aforementioned features can be identified:

Feature Identified by presence of
Alternate images Alternates or OC* entry in XObject
Optional content OCProperties dictionary in

document catalog
Transparency type Group and subtype (S)

Transparency in XObject
(‘transparency group XObject’)

* The OC entry may be used to indicate alternate images from PDF 1.5 onwards

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 37

11 Interactivity

11.1 Background

From version 1.2 onwards, PDF documents may contain interactive forms. A form is a
collection of fields in which users can enter data. The contents of the form fields can be
submitted to a specified location using a uniform resource locator (URL). External data can
also be imported into a form, and from PDF 1.3 onwards form fields can trigger JavaScript
actions (see section 14).

The presence of form data within a document may give rise to a number of problems. Form
submission and import actions are likely to contain external dependencies, which will break
the functionality of forms in a document in the long term. Other form actions may change the
visual appearance of forms.

11.2 Overview of risks

Risk

 Form submission / import may rely on external dependencies
 Form actions may result in visual appearance of forms that is different

from the appearance as originally intended by the producer of the
document

11.3 History of interactive features

The following table summarises the support of interactive features in different PDF versions:

Feature Support from version
Acrobat Forms (AKA ‘AcroForms’) PDF 1.2
XFA forms (forms based on Adobe’s XML Forms
Architecture6)

PDF 1.5

11.4 Identification

The presence of interactive forms can be identified by the presence of an interactive form
(AcroForm) dictionary in the document catalog . If a document contains XFA forms, there
will be an XFA entry inside the Acroform dictionary.

6 This is not a replacement of Acrobat Forms; from PDF 1.5 onwards both AcroForms as well as XFA
Forms are allowed.

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 38

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 39

12 Links and references to external data

12.1 Background

A PDF file may contain links and references to external data sources. This may lead to
problems if the document that contains the references becomes separated from the external
objects it refers to, or if these external objects become inaccessible. Also, even if the actual
objects are accessible, viewing them may require external applications that may not be
available at some future date (the very same issue was already discussed in section 7.1 for the
case of embedded data). Therefore, from a long-term preservation point of view, PDF
documents should be self-contained and free of external dependencies. References to external
objects may come in a number of different shapes and sizes.

Link annotations (introduced in PDF 1.0) may point to data in another (external) file, or to a
webpage. From PDF 1.1 onwards they can also contain launch actions that can be used to
open (external) files or applications on the computer on which the document is viewed. A
launch action can target any external file or application. This may cause problems when a
PDF file is migrated to a different (e.g. future) environment, where the target file or
application may not be available.

Objects that occupy large amounts of data (e.g. images) can be represented a stream objects in
PDF. From PDF 1.2 onwards, stream objects can also refer to external files. Since both text
and images are usually represented as stream objects, this means that virtually any part of the
content stream can be an external reference.

The specification of the PDF 1.2 file format introduced Movie annotations and Sound
annotations. In PDF 1.2, Movie annotations are links that refer to external movie files (from
PDF 1.3 onwards, they can also refer to movies that are embedded within the file). Movie
annotations have become largely obsolete with the introduction of Screen annotations in PDF
1.5. Sound annotations may either refer to sound objects that are embedded in the file itself,
or to external sound files (see also section 13). Movies and sounds can also be referred to by
an ordinary link annotation that contains a Sound, Movie or Rendition action.

The PDF 1.3 specification introduced web capture content. This allows (among other things),
information from a given URL to be imported and added to an existing PDF file. This feature
is fundamentally incompatible with long-term preservation, as it actively changes a file’s
representation upon viewing.

The PDF 1.4 specification introduced Reference XObjects, which allow one PDF document to
import data from another PDF document (which may either be an external file or an
embedded filestream).

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 40

12.2 Overview of risks

Risk

 External objects that are referred to may become separated from referring
document, or may become inaccessible altogether. This will affect the
appearance of such documents.

 Display of external objects may rely on other external applications that
may not be available in the future.

12.3 History of features that use external references

The following table shows the various features that use external references, and from which
PDF version onwards they can be found:

Feature Support from version
Link annotations PDF 1.0
Launch actions (within link annotations) PDF 1.1
Stream objects that refer to external files PDF 1.2
Movie annotations (may also refer to embedded movies from
PDF 1.3 onwards)

PDF 1.2

Sound annotations (may also refer to embedded sounds) PDF 1.2
Web capture content PDF 1.3
Reference XObjects (may also refer to embedded filestreams) PDF 1.4
Screen annotations (may also refer to embedded movies) PDF 1.5

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 41

12.4 Identification

The following table shows how the presence of any of the features discussed in the previous
sections can be identified in a PDF document.

Feature Identified by presence of
Link annotation with reference to another PDF
document

GoToR (‘Go-to remote’) action

Link annotation with reference to file on local file
system or network drive

Launch action.

Link annotation with reference to location on the
internet

URI (uniform resource identifier)
action

Movie annotation Annotation object with subtype
Movie

Sound annotation Annotation object with subtype
Sound

Screen annotation Annotation object with subtype
Screen

Link annotation, destination movie Movie action or Rendition action *

Link annotation, destination sound Sound action *
External file stream F (file specification) item in stream

dictionary
Reference XObject Ref entry in XObject dictionary
Web capture content SpiderInfo dictionary in document

catalog

* In order to determine whether sound or movies are embedded or from an external file we
would need to look at the underlying object(s))

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 42

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 43

13 Multimedia

13.1 Background

The PDF format supports a number of methods for including and viewing multimedia content
such as sounds and movies. The main long-term preservation risks of multimedia within a
PDF file are:

 The display of multimedia content may depend on external applications that may not
be available in the future

 The multimedia content itself may be an external file, and the link between this file
and the referring document may be lost over time

 The format in which multimedia content is stored may become obsolete in the future

The specification of the PDF 1.2 file format introduced support for playing multimedia
content using Movie annotations and Sound annotations, both of which were already briefly
mentioned in section 12.1. From PDF 1.5 onwards, Screen annotations are the preferred way
of referring to multimedia content, and the use of Movie annotations is discouraged from this
version onwards. PDF 1.6 introduced 3D annotations, which are used for viewing three-
dimensional models. In addition to these annotation types, link annotations (section 12.1) can
also be used to refer to multimedia content.

13.2 Movie annotations

In PDF 1.2 Movie annotations are links that refer to external movie files; in later versions
they can also refer to movies that are embedded within the file itself. The PDF Reference
Manual leaves the precise file format for movies unspecified, other than stating that it should
be “self-describing”. In practice this means that virtually any format is allowed. In turn, this
implies that the application that reads the PDF file (or a plug-in, or some external application
that is used for this) should support playback for a virtually unlimited number of movie
formats. Since movie formats may become obsolete over time, the accessibility of Movie
annotations is likely to be problematic in the long run7. The introduction of Screen
annotations in PDF 1.5 has made Movie annotations largely obsolete, and their use is
discouraged from this version onwards.

13.3 Sound annotations

Sound annotations can either refer to sound objects that are embedded in the file itself, or link
to external sound files. For embedded sounds, the PDF Reference Manual gives some
guidelines on which sound formats to use for optimum portability. However, the support of
compressed sound data, with apparently no limitations on which particular compression
methods to be used, means that in practice any format is allowed. Similarly, the specification
of external sound files goes no further than stating that sound files should be ‘“self-
describing”, containing all the information necessary to render the sound’.

7 In fact, even the PDF Reference Manual explicitly states here that ‘portability is not guaranteed’

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 44

The playback of both embedded and external sound data requires that the application that
reads the PDF file (or a plug-in, or some external application that is used for this) should
support playback of the supported formats. Since the supported file formats are described in
such general terms, this means that in practice virtually any possible sound format should be
supported, on any platform. Since sound formats may become obsolete over time, the
accessibility of Sound annotations is likely to be problematic in the long run.

13.4 Screen annotations

From PDF 1.5 onwards, Screen annotations are the preferred method for referring to media
content. Screen annotations allow more control over how media clips are displayed. The
points that were made before on the long-term accessibility of content that is referred to by
Movie annotations largely apply to Screen annotations as well (even though the PDF 1.5
Reference is somewhat more specific in its recommendations of which media formats should
be supported by PDF readers [6]).

13.5 3D annotations

PDF 1.6 introduced the possibility to incorporate and view models of three-dimensional
artwork. The actual data are stored as 3D streams, which conform to the Universal 3D (U3D)
format. The contents of a 3D stream are accessed through a 3D annotation, which renders a
view of the three-dimensional object on the page of a document. Users can rotate and move
the objects, so that they can view them from different angles. In PDF 1.6, some features
related to the viewing of 3D objects require the use of embedded JavaScript. The specification
of PDF 1.7 removed some of these dependencies on JavaScript. Also, PDF 1.7 introduced
many new features related to the appearance and behaviour of 3D artwork.

13.6 Link annotations

Link annotations were already discussed in section 12.1. Link annotations can refer to
movies, sounds and 3-D artwork using specific actions that are part of the link annotation.

13.7 Overview of risks

Risk

 Display of multimedia content may depend on external applications that
may not be available in the future

 Multimedia content itself may be an external file, and the link between
this file and the referring document may be lost over time

 Format in which multimedia content is stored may become obsolete over
time

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 45

13.8 History of multimedia features

The following table lists the various multimedia features in PDF and when they were
introduced:

Feature Support from version
Sound annotations PDF 1.2
Movie annotations * (movie as external file) PDF 1.2
Movie annotations * (movie as external or embedded file) PDF 1.3
Screen annotations PDF 1.5
3-D annotations PDF 1.6
* From PDF 1.5 onwards, Screen annotations replace the functionality of Movie
annotations. Movie annotations are deprecated in later versions, even though they are still
supported.

13.9 Identification

The following table shows how the presence of any of the features discussed in the previous
sections can be identified in a PDF document.

Feature Identified by presence of
Movie annotation Annotation object with subtype

Movie
Sound annotation Annotation object with subtype

Sound
Screen annotation Annotation object with subtype

Screen
3D annotation Annotation object with subtype 3D
Link annotation, destination movie Movie action or Rendition action *

Link annotation, destination sound Sound action
Link annotation, destination 3-D object GoTo3DView action

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 46

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 47

14 Scripting

14.1 Background

The specification of the PDF 1.3 file format introduced JavaScript actions. JavaScript is a
scripting (programming) language that, among other things, can be used to automate certain
tasks, and for controlling and manipulating form fields (see section 11.1). From PDF 1.6
onwards, JavaScript is also used for displaying and manipulating three-dimensional artwork
(section 13.5).

The use of JavaScript in PDF documents introduces a number following long-term
preservation risks. First, JavaScript actions only work properly within a viewer application
that has a built-in JavaScript interpreter (i.e. an application or plugin that “understands”
JavaScript and compiles it to machine code). Although all current versions Adobe Acrobat
Reader support JavaScript, documents that use JavaScript may not display correctly on
viewers without JavaScript support. Second, JavaScript actions in form fields may change the
visual appearance of forms (this problem was already mentioned in section 11.1). Third,
JavaScript actions may introduce external dependencies that may be hard to identify. Finally,
various IT security experts reported a number of security flaws in Adobe’s reader applications
that allow the execution of malicious code on a user’s system [16], [17]. These flaws can be
exploited in a number of different ways, some of them involving the use of JavaScript. This
can actually pose a threat to the entire repository in which a document is stored.

14.2 Overview of risks

Risk

 Appearance of documents that use JavaScript in viewers that do not
support JavaScript may be different from the appearance as intended by
the producer of the document

 JavaScript actions in form fields may change visual appearance of forms
 JavaScript actions can introduce external dependencies that may result in

the document appearing differently from the way it was intended by its
producer

 Presence of security leaks in Acrobat reader that can be exploited using
JavaScript

14.3 History of scripting features

The following table lists the scripting features in PDF and when they were introduced:

Feature Support from version
JavaScript actions PDF 1.3

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 48

14.4 Identification

The use of JavaScript can be identified by the presence of JavaScript actions in a document.

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 49

15 Structure

15.1 Background

From PDF 1.3 onwards, it is possible to store information about a document’s logical
structure in so-called structure elements. This makes it possible to explicitly tag chapters,
sections, subsections, figures, captions, and so on. A hierarchical structure tree defines how
the structure elements are related to each other.

In PDF 1.4 this concept is extended to tagged PDF, which allows page content (text, tables,
and graphics) to be extracted and reused for other purposes. Some possible examples are:

 Extraction of text and graphics for pasting into other applications
 Automatic reflow of text and graphics to fit a page of a different size than was

assumed for the original layout
 Text processing (e.g. searching, indexing, spell-checking)
 Conversion to other file formats (e.g. HTML, XML) with preservation of document

structure and basic styling information
 Making content accessible to the visually impaired

Tagged PDF achieves this by defining a set of standard structure types that describe the
logical structure of a document in terms of paragraphs, headings, articles, and tables. Styling
information is stored in the form of structure attributes. Also, tagged PDF makes an explicit
distinction between actual page content and layout and pagination artefacts (e.g. page
numbers, headers, footers).

The presence of structure information is relevant to the long-term preservation of a document
in a number of ways. First, structure enhances the feasibility of any future migration of a
document’s contents to some other file format. It also improves the accessibility of a
document. For example, structure enables re-flow of text and graphics on handheld devices,
and a meaningful interpretation of a document by screen reader software.

15.2 Overview of risks

Risk

 Possibilities for migration will be limited for documents that do not use
tagging

 Limited accessibility to the visually impaired of documents that do not use
tagging

 Re-flow of text and graphics on handheld devices may not be possible for
documents that do not use tagging

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 50

15.3 History of structure-related features

The following table lists the various structure-related features in PDF and when they were
introduced:

Feature Support from version
Structure elements PDF 1.3
Tagged PDF PDF 1.4
Separate tagging of elements whose page order cannot be
determined (TagSuspect)

PDF 1.6

15.4 Identification

A document that conforms to the tagged PDF conventions can be identified from the
following characteristics (‘loose’ definition, but see below):

1. the document catalog contains a mark information (MarkInfo) dictionary
2. the MarkInfo dictionary contains a Marked entry (this is a Boolean flag)
3. the value of MarkInfo is true

If the above conditions are all met, the document will most likely conform to tagged PDF
conventions. However, there are situations in which some elements of a document may not
completely conform to tagged PDF. From PDF 1.6 onwards, such elements can be given a
special tag (TagSuspect), and their presence in the document is indicated by a special Suspects
flag in the mark information dictionary. By default, the value of Suspects (if it exists at all) is
false, and it is true if the document contains any TagSuspect elements. So, the more strict way
of identifying tagged PDF would be (‘strict’ definition):

1. the document catalog contains a mark information (MarkInfo) dictionary
2. the MarkInfo dictionary contains a Marked entry (this is a Boolean flag)
3. the value of MarkInfo is true
4. if a Suspects flag exists, its value is false

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 51

16 Known issues

This chapter is reserved for the description and documentation of specific problems, issues,
case studies and any next-level weirdness encountered with PDF documents ‘in the wild’ (or,
more likely, the KB’s somewhat less wild e-Depot repository) .

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 52

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 53

Acknowledgements

Judith Rog originally started research on the PDF format at the KB, and her earlier work
provided a good starting point for the current document. I also thank Judith for her help in
getting me started with PDF, and for providing me with much of the literature upon which
this report is based. Thanks are also due to Barbara Sierman for her helpful comments on
earlier drafts of this document.

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 54

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 55

References

[1] Bienz, T., Cohn, R. & Meehan, J.R., 1996. Portable Document Format Reference
Manual, Version 1.2. Adobe Systems Incorporated.

[2] Adobe Systems Incorporated, 2000. PDF Reference, second edition - Portable
Document Format Version 1.3. Addison-Wesley.

[3] PRONOM file format registry. Link: http://www.nationalarchives.gov.uk/PRONOM/
(accessed 9 September 2009)

[4] RC4. Wikipedia, the free encyclopedia. Link: http://en.wikipedia.org/wiki/RC4
(accessed 15 September 2009)

[5] Adobe Systems Incorporated, 2001. PDF Reference, third edition - Portable
Document Format Version 1.4. Addison-Wesley.

[6] Adobe Systems Incorporated, 2003. PDF Reference, fourth edition – Adobe Portable
Document Format Version 1.5.

[7] Adobe Systems Incorporated, 2004. PDF Reference, fifth edition – Adobe Portable
Document Format Version 1.6.

[8] Adobe Systems Incorporated, 2006. PDF Reference, sixth edition – Adobe Portable
Document Format Version 1.7.

[9] Internet media type. Wikipedia, the free encyclopedia. Link:
http://en.wikipedia.org/wiki/Internet_media_type (accessed 15 September 2009)

[10] Digital signature. Wikipedia, the free encyclopedia. Link:
http://en.wikipedia.org/wiki/Digital_signature (accessed 15 September 2009)

[11] Chou, C., 2006. Guidelines for Creating Archival Quality PDF Files. Florida Digital
Archive.

[12] Battilana, M.C., 2004. The GIF Controversy: A Software Developer's Perspective.
Link: http://lzw.info/ (accessed 24 September 2009)

[13] ISO, 2005. Document management – Electronic document file format for long-term
preservation – Part 1: Use of PDF 1.4 (PDF/A-1).

[14] Submarine patent. Wikipedia, the free encyclopedia. Link:
http://en.wikipedia.org/wiki/Submarine_patent (accessed 6 October 2009)

[15] Joint Photographic Experts Group. JPEG 2000 Committee Drafts. Link:
http://www.jpeg.org/jpeg2000/CDs15444.html (accessed 6 October 2009)

[16] Two New Vulnerabilities in Adobe Acrobat Reader. Link:
http://www.f-secure.com/weblog/archives/00001671.html (accessed 6 October 2009)

[17] Adobe Reader/Acrobat JavaScript Method Handling Vulnerability. Link:
http://www.f-secure.com/vulnerabilities/SA30832 (accessed 6 October 2009)

[18] Phinney, T.W. TrueType & PostScript Type 1: What's the Difference? Link:
http://www.truetype-typography.com/articles/ttvst1.htm (accessed 8 October 2009)

[19] Type 3 fonts. Link: http://www.prepressure.com/fonts/basics/type3 (accessed 8
October 2009)

[20] Sprague, R. No 1. Font Issues. PDF Planet. Link:
http://www.planetpdf.com/mainpage.asp?WebPageID=362 (accessed 12 October
2009)

[21] Rog, J., 2007. PDF Guidelines - Recommendations for the creation of PDF files for
long-term preservation and access. Koninklijke Bibliotheek / National Library of the
Netherlands.

http://www.nationalarchives.gov.uk/PRONOM/
http://en.wikipedia.org/wiki/RC4
http://en.wikipedia.org/wiki/Internet_media_type
http://en.wikipedia.org/wiki/Digital_signature
http://lzw.info/
http://en.wikipedia.org/wiki/Submarine_patent
http://www.jpeg.org/jpeg2000/CDs15444.html
http://www.f-secure.com/weblog/archives/00001671.html
http://www.f-secure.com/vulnerabilities/SA30832
http://www.truetype-typography.com/articles/ttvst1.htm
http://www.prepressure.com/fonts/basics/type3
http://www.planetpdf.com/mainpage.asp?WebPageID=362

Adobe PDF – Inventory of long-term preservation risks

Author: Johan van der Knijff
Date: 20-10-2009
Version: 0.2 Page: 56

	1 Introduction
	1.1 Scope and target audience
	1.2 Outline of this document
	1.3 On the mitigation of preservation risks

	2 Structure of a Portable Document Format file
	2.1 Introduction
	2.2 PDF file structure
	2.2.1 Header
	2.2.2 Body
	2.2.3 Cross-reference table
	2.2.4 Trailer

	2.3 PDF objects
	2.3.1 Boolean objects
	2.3.2 Numeric objects
	2.3.3 String objects
	2.3.4 Name objects
	2.3.5 Array objects
	2.3.6 Dictionary objects
	2.3.7 Stream objects
	2.3.8 Null object
	2.3.9 Indirect objects

	2.4 PDF Document structure

	3 File identifiers and general information
	3.1 Identifiers
	3.2 General information
	3.3 Identification of version number

	4 Authentication
	4.1 Background
	4.2 History of authentication-related features
	4.3 Identification

	5 Fonts
	5.1 What is a font?
	5.2 Font types
	5.3 Embedding and subsetting of fonts
	5.4 Legal aspects of embedded fonts
	5.5 Implications for digital preservation
	5.6 Overview of risks
	5.7 History of supported fonts
	5.8 Identification

	6 Colours
	6.1 Colour spaces
	6.2 History of supported colour spaces
	6.3 Colour depth
	6.4 History of supported colour depths
	6.5 Overview of risks
	6.6 Identification

	7 Embedded data and file attachments
	7.1 Background
	7.2 Overview of risks
	7.3 History of embedding-related features
	7.4 Identification

	8 Encryption and password protection
	8.1 Background
	8.2 Overview of risks
	8.3 History of encryption-related features
	8.4 Identification

	9 Filters
	9.1 Background
	9.2 Overview of risks
	9.3 History of allowed filters
	9.4 Identification

	10 Images
	10.1 Background
	10.2 Overview of risks
	10.3 History of image-related features
	10.4 Identification

	11 Interactivity
	11.1 Background
	11.2 Overview of risks
	11.3 History of interactive features
	11.4 Identification

	12 Links and references to external data
	12.1 Background
	12.2 Overview of risks
	12.3 History of features that use external references
	12.4 Identification

	13 Multimedia
	13.1 Background
	13.2 Movie annotations
	13.3 Sound annotations
	13.4 Screen annotations
	13.5 3D annotations
	13.6 Link annotations
	13.7 Overview of risks
	13.8 History of multimedia features
	13.9 Identification

	14 Scripting
	14.1 Background
	14.2 Overview of risks
	14.3 History of scripting features
	14.4 Identification

	15 Structure
	15.1 Background
	15.2 Overview of risks
	15.3 History of structure-related features
	15.4 Identification

	16 Known issues
	Acknowledgements
	References

